#### Fachhochschule Südwestfalen



Bernhard C. Schäfer

AK Konservierende Bodenbearbeitung und Direktsaat Baden-Württemberg Stuttgart Hohenheim, 17.01.2019



University of Applied Sciences

#### Gliederung

- Erfahrungen mit konservierender Bodenbearbeitung im Versuchsgut Merklingsen
- Erfahrungen mit Direktsaat im Versuchsgut Merklingsen
- Fruchtfolge aktuelle Situation und Konsequenzen



#### Naturraum und Ausstattung Versuchsgut Merklingsen



Naturraum: Soester Börde

Höhenlage: 80 m über NN

Klima: 750 mm Niederschlag, Jahresdurchschnittstemp.

9,0° C

Bodentyp: Pseudogley-Parabraunerde, Humusgehalt > 2%

Bodenart: uL, sL, Schluffanteil ca. 70 %

Betriebsfläche: 54 ha, arrondierte Lage

zusätzliche Flächen: rund 42 ha (= insges. 96 ha)

Parzellenzahl: rd. 4000 bis 5000 Versuchsparzellen



#### Aufgelockerte Fruchtfolge im Versuchsgut Merklingsen

|   |                               | Raps | Weizen |   | Bohnen |   | Weizen |   | Mais | Rüben | Hafer |   | Gerste |   |
|---|-------------------------------|------|--------|---|--------|---|--------|---|------|-------|-------|---|--------|---|
| 1 | Kalk                          |      |        |   |        | 0 |        |   |      |       |       | 0 |        |   |
| 2 | P <sub>2</sub> O <sub>5</sub> |      |        |   |        |   |        |   | 0    |       |       |   |        |   |
| 3 | K <sub>2</sub> O              |      |        |   |        |   |        |   |      |       |       |   |        |   |
| 4 | Kompost                       |      |        | 4 |        |   |        |   |      |       |       |   |        |   |
| 5 | Gülle                         | 6    | 6      |   |        |   | 6      |   | 6    | 6     | 6     | 6 | 6      | 6 |
|   | Gründüngung                   |      |        |   |        |   |        | 0 |      |       |       |   |        |   |

| Nr. | Komponente                    | Menge / ha  | Menge und Art                                                                                                                                             |
|-----|-------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | CaO                           | 500 kg p.a. | 4-jährig: 2000 kg/ha = 37 - 40 dt/ha kohlensaurer Kalk (53 % CaO)                                                                                         |
| 2   | P <sub>2</sub> O <sub>5</sub> |             | Diammonphosphat 18/46, 2 (- 2,5) dt/ha                                                                                                                    |
| 3   | K₂O                           |             | organisch, keine Ergänzung als Mineraldünger erforderlich                                                                                                 |
| 4   | Kompost                       | ca. 50 t    | ca. 90 - 100 m³/ha Grün-Aktiv-Kompost                                                                                                                     |
| 5   | Gülle                         | eine Gabe   | Gerste + Weizen: ca. 50 - 60 % des N-Bedarfes,<br>Raps + Mais: ca. 90 %, Hafer + Rüben: 100 %,<br>Stroh-Ausgleichsdüngung vor Gerste und Raps (80 N ges.) |
| 6   | Gründüngung                   |             | Grobleguminosengemenge (Ackerbohnen / Gelbsenf)                                                                                                           |

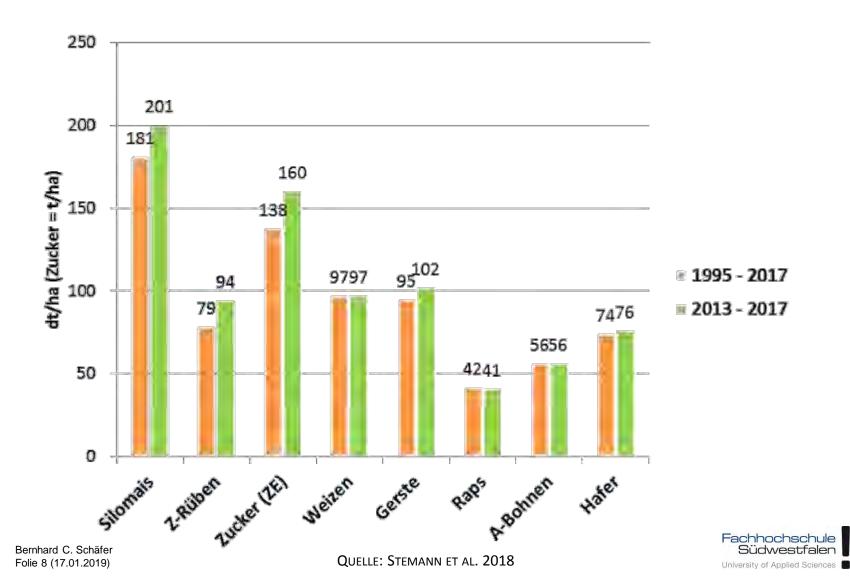


#### Auswirkungen von langjährigem Pflugverzicht



### Abundanzen der Bodentiere sowie mikrobielle Biomasse unter konventioneller Bodenbearbeitung (KV) und konservierender Bodenbearbeitung (KS)

|                                                                | KV     | KS     |
|----------------------------------------------------------------|--------|--------|
| Regenwürmer [Ind. m <sup>-2</sup> ]                            | 35,4   | 56,1   |
| Enchytraeiden [Ind. 10 <sup>3</sup> m <sup>-2</sup> ]          | 5658,7 | 6797,2 |
| Milben [Ind. 10 <sup>3</sup> m <sup>-2</sup> ]                 | 16,4   | 11,2   |
| Collembolen [Ind. 10 <sup>3</sup> m <sup>-2</sup> ]            | 13,1   | 11,2   |
| Nematoden [Ind. 10 <sup>3</sup> 100g TS <sup>-1</sup> ]        | 1,8    | 2,3    |
| Mikrobielle Biomasse [μg C <sub>mic</sub> g TS <sup>-1</sup> ] | 335,1  | 372,1  |




# Erfahrungen konservierende Bodenbearbeitung Versuchsgut Merklingsen Auftretende Effekte und Zeitspannen für ihre Ausprägung bei Umstellung auf pfluglose Bodenbearbeitungssyteme

| Anz.Jahre                             | 1   | 2      | 3   | 4   | 5    | 6    | 7   | 8   | 9       | 10  |
|---------------------------------------|-----|--------|-----|-----|------|------|-----|-----|---------|-----|
| Phase                                 | -   | Aufbau | ı   |     | Über | gang |     | Eta | ablieru | ing |
| Boden-<br>bearbeitungs-<br>intensität | +++ | +++    | ++  | ++  | +    | +    | +   | +   | +       | +   |
| Tragfähigkeit                         | -   | +      | ++  | +++ | +++  | +++  | +++ | +++ | +++     | +++ |
| H <sub>2</sub> O-Speicher             | -   | -/+    | +/- | +/- | +    | +    | +   | ++  | +++     | +++ |
| Schüttfähig-<br>keit                  | =   | -/+    | +/- | +/- | +    | +    | +   | ++  | +++     | +++ |
| Humusaufbau                           | -   | -/+    | +/- | +/- | +    | +    | +   | ++  | +++     | +++ |
| N-Mobilisie-<br>rung                  |     |        | *   | +/- | +/-  | +    | +   | ++  | ++      | +++ |
| Strohrotte                            |     | -/+    | +/- | +/- | +    | +    | ++  | +++ | +++     | +++ |
| Biolog. Aktivi-<br>tät                | 8   | -/+    | +/- | +/- | +    | +    | ++  | +++ | +++     | +++ |



#### Erträge pfluglos bestellter Hauptkulturen im langjährigen Mittel



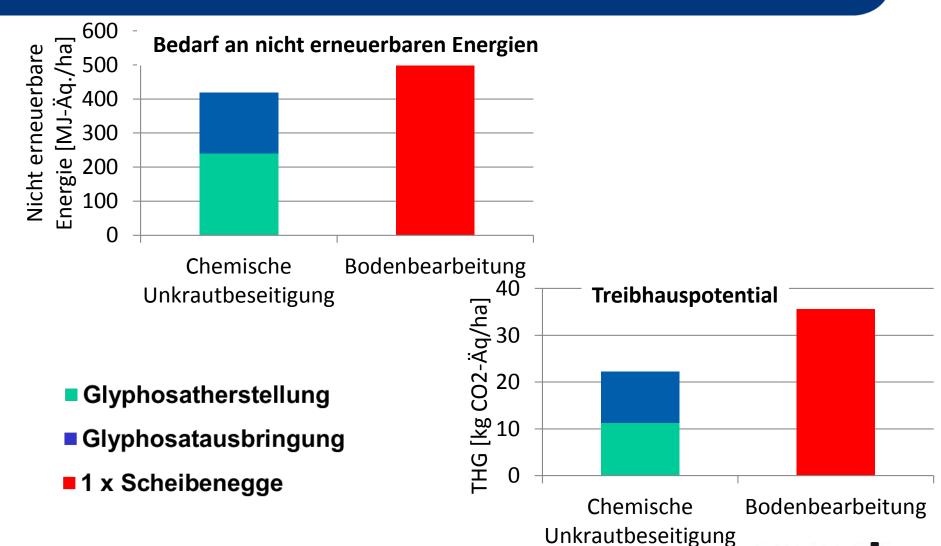
## Übliche Behandlungshäufigkeit mit PSM in achtjähriger Fruchtfolge

| Kulturart        | Herbizid*                                | Wachstums<br>-regler | Fungizid | Insektizid | Summe |  |  |
|------------------|------------------------------------------|----------------------|----------|------------|-------|--|--|
| WRaps            | 2-3                                      | 1-2                  | 1        | 2-4        | 6-10  |  |  |
| WWeizen          | 2                                        | 1-3                  | 2-3      | 0-1        | 5-9   |  |  |
| Ackerbohne       | 1                                        | -                    | 1        | 1-2        | 3-4   |  |  |
| WWeizen          | 2                                        | 1-3                  | 2-3      | 0-1        | 5-9   |  |  |
| Mais             | 1                                        | -                    | -        | -          | 1     |  |  |
| Z-Rüben          | 3                                        | -                    | 1        | 1?         | 5     |  |  |
| Hafer            | 1                                        | 1                    | 0-1      | 0-1        | 2-4   |  |  |
| WGerste          | 2                                        | 1-2                  | 1-2      | 0-1        | 4-7   |  |  |
| Mittlere jährlic | Mittlere jährliche Behandlungshäufigkeit |                      |          |            |       |  |  |

<sup>\*</sup> Meistens zusätzlich 1 x Glyphosat vor der Saat Schnecken- und Mäusebekämpfung unberücksichtigt



#### Pflanzenschutzmitteleintrag in Oberflächengewässer


### Wirkstoffaustrag im Mittel von drei Jahren in Mais nach unterschiedlicher Bodenbearbeitung

|                           | Austrag mit Oberflächenabfluss |           |             |  |  |  |  |
|---------------------------|--------------------------------|-----------|-------------|--|--|--|--|
| Wirkstoff/<br>Menge       | Pflug                          | Mulc      | hsaat       |  |  |  |  |
| 90                        | Austrag                        | Austrag   | Reduktion % |  |  |  |  |
| Terbutylazin<br>750 g/ha  | 0,96 g/ha                      | 0,10 g/ha | 90          |  |  |  |  |
| Metolachlor<br>1450 g/ha  | 0,80 g/ha                      | 0,16 g/ha | 80          |  |  |  |  |
| Pendimethalin<br>990 g/ha | 0,38 g/ha                      | 0,11 g/ha | 71          |  |  |  |  |

Quelle: Erlach und Lütke Entrup, 2002



#### Chemische und mechanische Unkrautbeseitigung im Vergleich



Bernhard C. Schäfer Folie 11 (17.01.2019)



aufgrund eines Beschlusses

des Deutschen Bundestages

QUELLE: LÜTKE BÖRDING UNVERÖFFENTLICHT, BERECHNUNGEN MIT SALCA

Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen





#### Vierjährige Fruchtfolge im Versuchsgut Merklingsen

|   |   |                               | Raps |        | Weizen |       | Weizen                                  |     | Gerste |        |
|---|---|-------------------------------|------|--------|--------|-------|-----------------------------------------|-----|--------|--------|
|   | 1 | Kalk                          |      |        |        | 0     |                                         |     |        |        |
| ľ | 2 | P <sub>2</sub> O <sub>5</sub> |      |        |        |       |                                         | 0   |        |        |
| _ | 3 | K₂O                           |      | ~~~~   |        | ***** | *************************************** | ~~~ |        |        |
| • | 4 | Kompost                       |      | ****** |        | 4     | *************************************** | ~~~ |        | ****** |
| m | 5 | Gülle                         | 6    | ~~~~   | 6      |       | 6                                       | 6   | 6      | 6      |
| • | 6 | Gründüngung                   |      |        |        |       |                                         |     |        |        |

| Nr. | Komponente                    | Menge / ha  | Menge und Art                                                                                                                                             |
|-----|-------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | CaO                           | 500 kg p.a. | 4-jährig: 2000 kg/ha = 37 - 40 dt/ha kohlensaurer Kalk (53 % CaO)                                                                                         |
| 2   | P <sub>2</sub> O <sub>5</sub> |             | Diammonphosphat 18/46, 2 (- 2,5) dt/ha                                                                                                                    |
| 3   | K₂O                           |             | organisch, keine Ergänzung als Mineraldünger erforderlich                                                                                                 |
| 4   | Kompost                       | ca. 50 t    | ca. 90 - 100 m³/ha Grün-Aktiv-Kompost                                                                                                                     |
| 5   | Gülle                         | eine Gabe   | Gerste + Weizen: ca. 50 - 60 % des N-Bedarfes,<br>Raps + Mais: ca. 90 %, Hafer + Rüben: 100 %,<br>Stroh-Ausgleichsdüngung vor Gerste und Raps (80 N ges.) |
| 6   | Gründüngung                   |             | Grobleguminosengemenge (Ackerbohnen / Gelbsenf)                                                                                                           |

Bernhard C. Schäfer

Folie 12 (17.01.2019)

Fachhochschule
Südwestfalen
University of Applied Sciences

## Übliche Behandlungshäufigkeit mit PSM in vierjähriger Fruchtfolge

| Kulturart        | Herbizid* | Wachstums<br>-regler | Fungizid | Insektizid | Summe |
|------------------|-----------|----------------------|----------|------------|-------|
| WRaps            | 2-3       | 1-2                  | 1        | 2-4        | 6-10  |
| WWeizen          | 2         | 1-3                  | 2-3      | 0-1        | 5-9   |
| WWeizen          | 2         | 1-3                  | 2-3      | 0-1        | 5-9   |
| WGerste          | 2         | 1-2                  | 1-2      | 0-1        | 4-7   |
| Mittlere jährlic | 5,0-8,8   |                      |          |            |       |

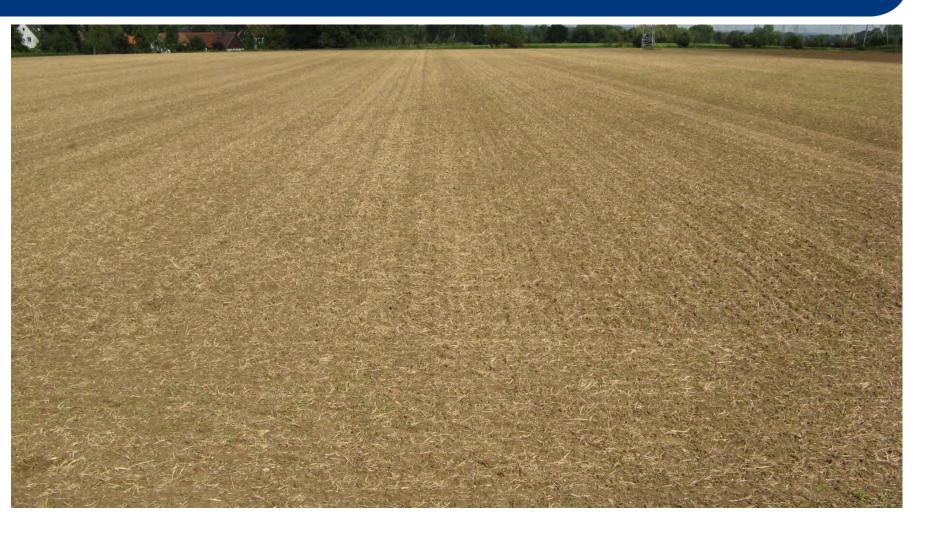
<sup>\*</sup> Meistens zusätzlich 1 x Glyphosat vor der Saat Einwandern von Trespenarten vom Rand her beachten Schnecken- und Mäusebekämpfung unberücksichtigt



## Mäuse suchen Schutz unter Strohhaufen infolge ungleichmäßiger Strohverteilung

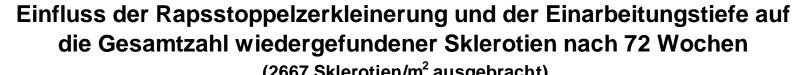


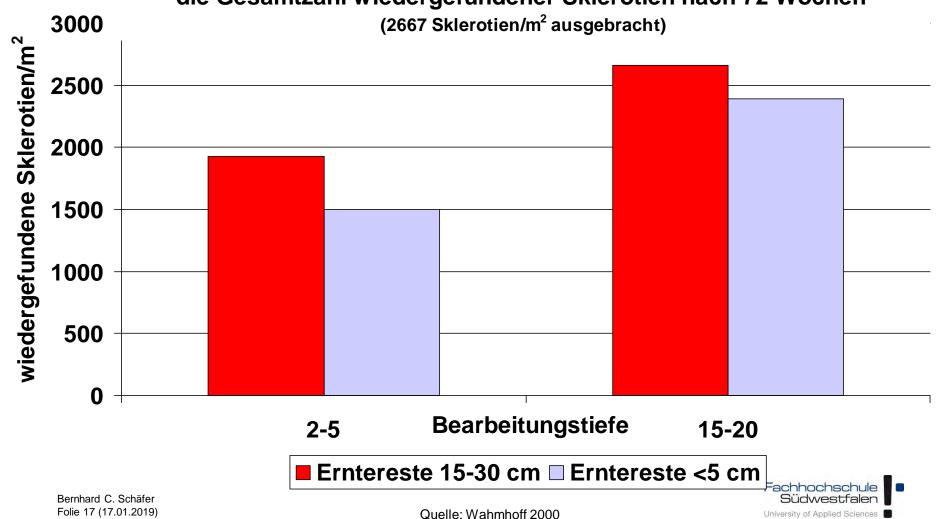



## Mäuse suchen Schutz unter Strohhaufen infolge ungleichmäßiger Strohverteilung



BILDQUELLE: SCHÄFER





#### Strohverteilung nach Hochschnitt und anschließendem Mulchem

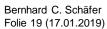




#### Weißstängeligkeit Sclerotinia sclerotiorum





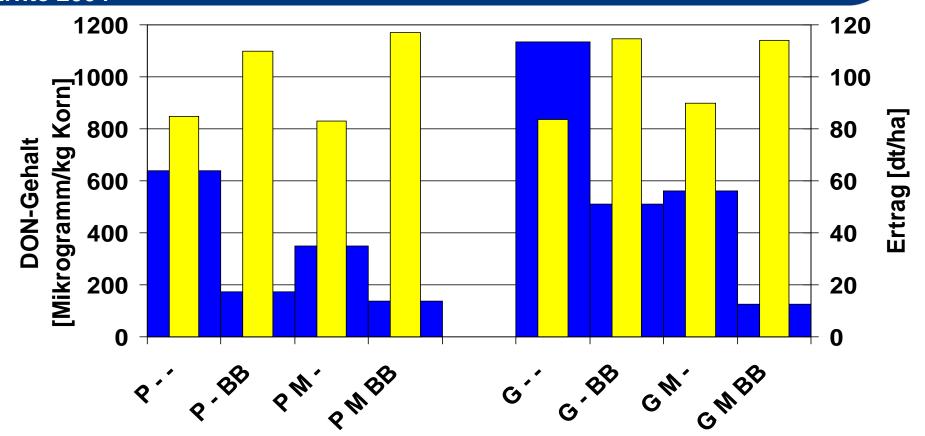

#### Verfahren nach Anbau von Körnermais





#### Verfahren nach Anbau von Körnermais








#### Verfahren nach Anbau von Körnermais



Erfahrungen konservierende Bodenbearbeitung Versuchsgut Merklingsen DON-Gehalt und Ertrag von Winterweizen nach Vorfrucht Körnermais in Abhängigkeit von Bodenbearbeitung, Mulchereinsatz und Blütenbehandlung, Ernte 2004

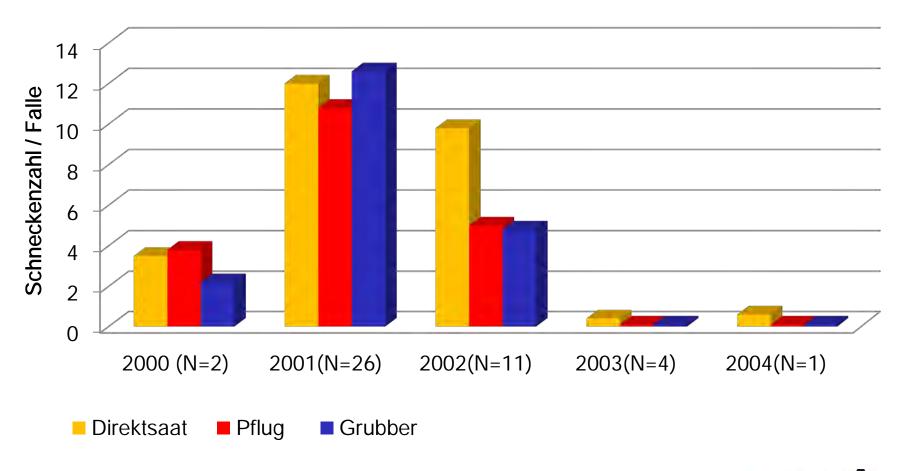


Bodenbearbeitung nach Körnermais
P = Pflug; G = Grubber, M = Mulcher, BB =Blütenbehandlung
■ Mykotoxin ■ Ertrag

Fachhochschule
Südwestfalen
University of Applied Sciences

### Zuckerrüben nach Mais? Rhizoctonia solani – befallsfördernde Einflüsse

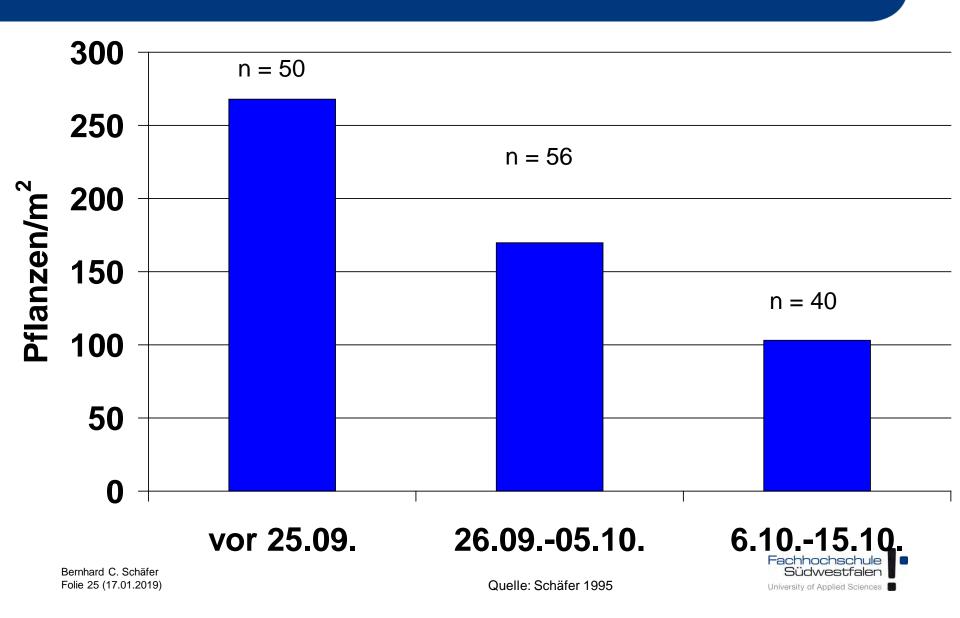
- Enge Stellung der Zuckerrübe in der Fruchtfolge
- Mais in der Fruchtfolge (vor Rübe)
  - indirekt: Bodenverdichtungen
  - direkt: Mais als Wirtspflanze der AG 2-2 IIIb
- Viel unverrottete Substanz im Boden (Maisstroh)
- Schlechte Bodenstruktur: Bodenverdichtungen, Staunässe, reduktive Bodenzustände
- Bearbeitung der ungünstigen (zu feuchten) Bodenverhältnissen
- Unharmonische, stickstofflastige Düngung (Gülle)
- Starkregen, verbunden mit hohen Temperaturen




#### Schneckenregulierung



Bernhard C. Schäfer Folie 23 (17.01.2019) Fachhochschule Südwestfalen


#### Einfluss der Bodenbearbeitung auf den Schneckenbesatz Mittlere Schneckenzahl/Falle/Termin in drei Bodenbearbeitungsvarianten

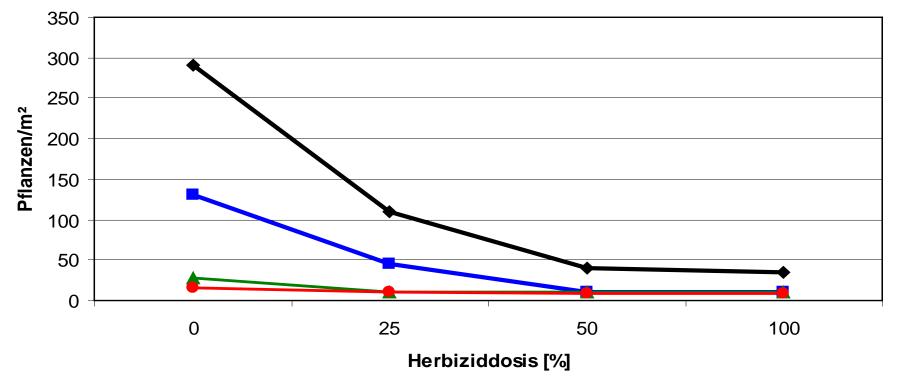


Fachhochschule
Südwestfalen
University of Applied Sciences

Erfahrungen konservierende Bodenbearbeitung Versuchsgut Merklingsen

### Unkraut- und Ungrasdichten in Winterweizen in Abhängigkeit vom Aussaattermin




### Windhalm: Pflanzenzahlen u. Samenbildung in Abhängigkeit von der Getreideart

| Kulturart         | Windhalm<br>Pflanzen/m² | reife<br>Samen/m² |
|-------------------|-------------------------|-------------------|
| Winter-<br>gerste | 12,0                    | 12.969            |
| Winter-<br>weizen | 33,3                    | 47.760            |

Quelle: Kaiser 1989

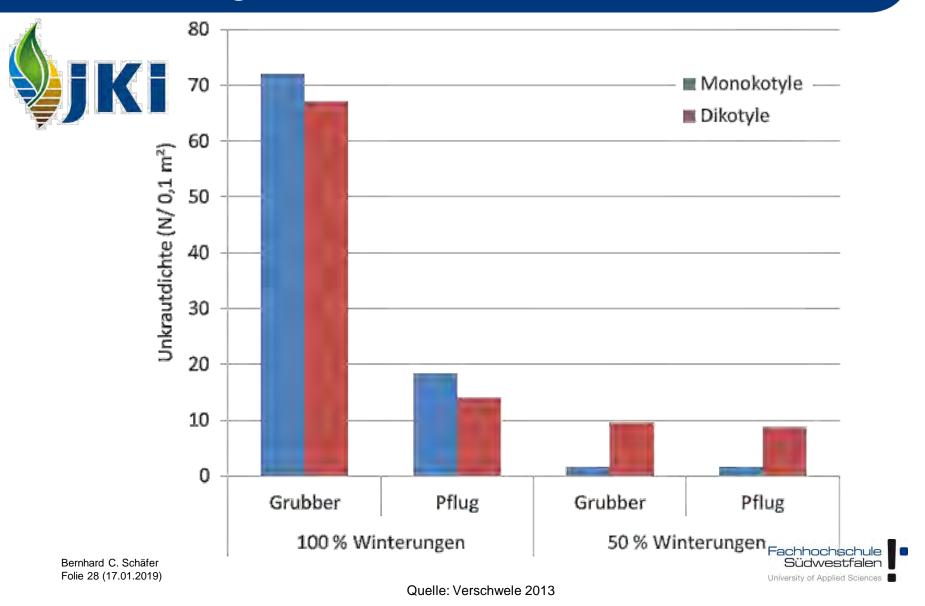


### Einfluss der Bodenbearbeitung und Fruchtfolge auf das Auftreten von Windhalm bei unterschiedlicher Herbiziddosis



- → Wintergetreidebetonte Marktfruchtfolge (Mulchsaat) 75 % Getreide, 12,5% Winterraps, 12,5% Stillleg.
- Wintergetreidebetonte Marktfruchtfolge (Pflug), 75% Getreide, 12,5% Winterraps, 12,5% Stillleg.
- Futterbau-Fruchtfolge (Mulchsaat), 50% Getreide, 50% Blattfrüchte\*
- Aufgelockerte Futterbaufruchtfolge (Pflug), 50% Getreide, 50% Blattfrüchte\*

\*Je 12,5% Kleegras, Erbsen, (Mais, Winterraps, Kartoffeln) Jährlicher Wechsel von Blatt- und Halmfrucht
Fachhochschule
Bernhard C. Schäfer


(Quello: PALLIT, 2003)
Südwestfelen

University of Applied Sciences

Bernhard C. Schäfer
Folie 27 (17.01.2019)

(Quelle: PALLUT, 2003)

### Auswirkungen differenzierter Fruchtfolgen und Bodenbearbeitung auf die Dichte von Ungräsern und Unkräutern



#### Zwischenfazit

- Unmittelbare Effekte auf die PS-Intensität gemessen an der Behandlungshäufigkeit ergeben sich durch die erforderliche Fruchtfolgeanpassung.
- Im Vergleich zu pflügenden Betrieben in den einzelnen Kulturen etwas geringere Pflanzenschutzintensität.
- In aufgelockerten Fruchtfolgen keine spezifischen Probleme mit Ungräsern oder Unkräutern.
- Biologische Aktivität des Bodens für Abbaugeschwindigkeit von Ernterückständen von Bedeutung – Einfluss auf "antiphytopathogenes Potential"?
- Geringe Bedeutung von Halmbasiserkrankungen und DTR im Getreide, keine Probleme mit Rhizoctonia solani in Zuckerrüben.



## Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb" Informationen zum Forschungsprojekt "Optimierter Klimabetrieb"



Bernhard C. Schäfer Folie 30 (17.01.2019)

- Systemversuch mit Großparzellen á 0,8 ha dazwischen 3-5 m Graswege
- Fruchtfolge:
   WRa-WW<sub>US</sub>-AB-WG-<sub>GR</sub> SM-WW-<sub>GR</sub>-SM-WR<sub>GPS</sub>
- 6 Versuchsjahre
- DS-Technik: Cross Slot
- Gegenüber betriebsüblicher MS: vergleichbare Erträge bei WRa, WW, WG, AB, deutliche Mindererträge bei Mais



Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb"


### Abundanzen der Bodentiere sowie mikrobielle Biomasse unter konventioneller Bodenbearbeitung (KV), konservierender Bodenbearbeitung und Direktsaat

|                                                                | KV     | KS     | DS     |
|----------------------------------------------------------------|--------|--------|--------|
| Regenwürmer [Ind. m <sup>-2</sup> ]                            | 35,4   | 56,1   | 125,4  |
| Enchytraeiden [Ind. 10 <sup>3</sup> m <sup>-2</sup> ]          | 5658,7 | 6797,2 | 1050,0 |
| Milben [Ind. 10 <sup>3</sup> m <sup>-2</sup> ]                 | 16,4   | 11,2   | 0,9    |
| Collembolen [Ind. 10 <sup>3</sup> m <sup>-2</sup> ]            | 13,1   | 11,2   | 5,6    |
| Nematoden [Ind. 10 <sup>3</sup> 100g TS <sup>-1</sup> ]        | 1,8    | 2,3    | 2,1    |
| Mikrobielle Biomasse [μg C <sub>mic</sub> g TS <sup>-1</sup> ] | 335,1  | 372,1  | 394,2  |

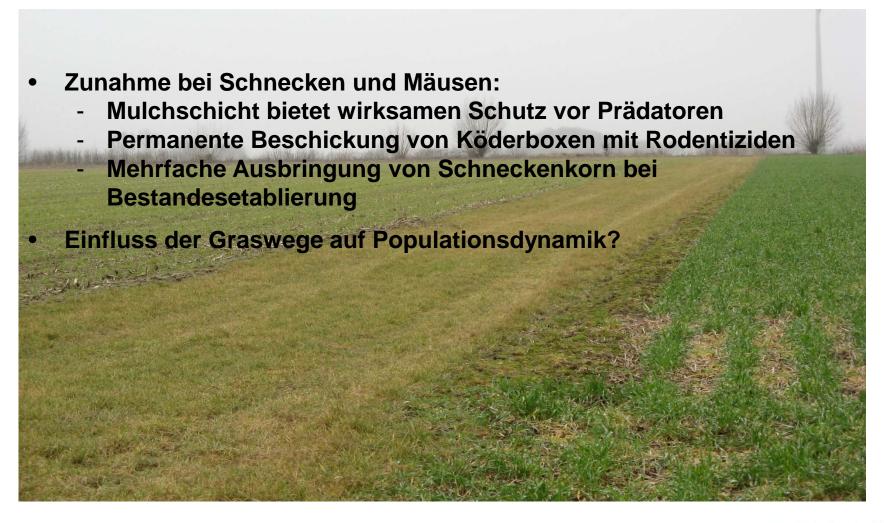


Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb"

#### Einfluss auf die biologische Aktivität des Bodens



BILDOUFLLE: SCHÄFFR

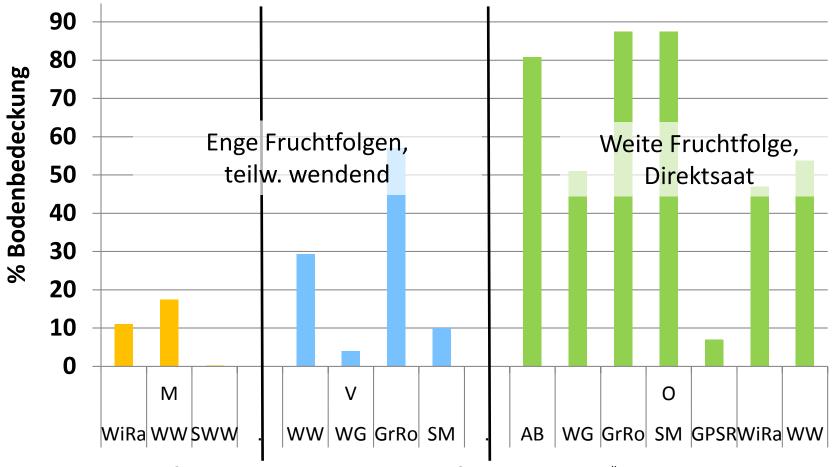

## Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb" Schneckenfraß - Bsp. Wintergerste nach Ackerbohnen



BILDQUELLE: SCHÄFER



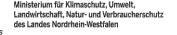
## Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb" Einfluss der Graswege zwischen den Parzellen?




BILDQUELLE: SCHÄFER

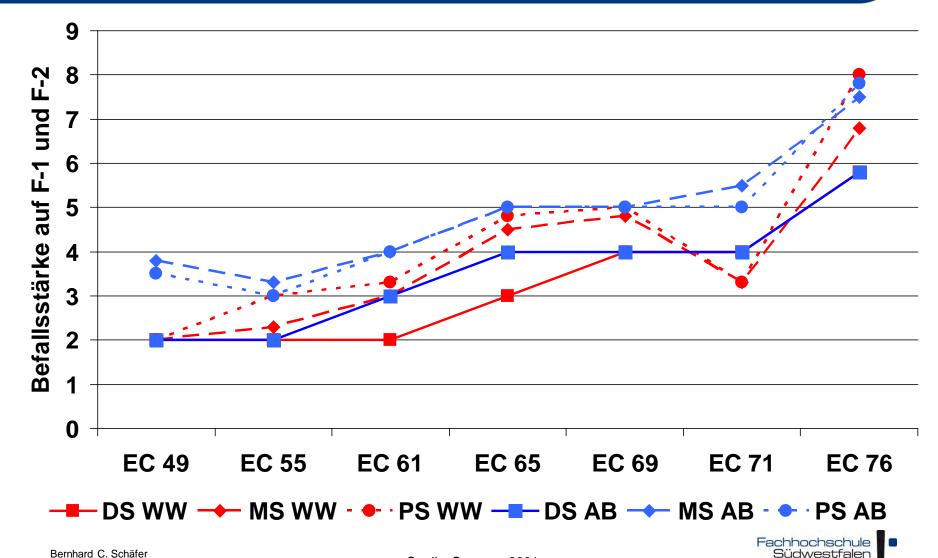


#### Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb" Bodenbedeckung durch Ernterückstände zum Zeitpunkt der Aussaat 2015/2016 am Standort Soest in den Modellbetrieben


#### Mulchauflage behindert Bestandesetablierung und Unkrautregulierung



QUELLE: ERGEBNISSE DES FORSCHUNGSPROJEKTES "OPTIMIERTER KLIMABETRIEB"




Cefördert durch:





# Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb" Befallsverlauf mit Septoria tritici am Standort Merklingsen 2001 in Abhängigkeit von Bodenbearbeitung und Vorfrucht



Bernhard C. Schäfer Folie 36 (17.01.2019)

Quelle: Stemann 2001

University of Applied Sciences

#### Erfahrungen konservierende Bodenbearbeitung Versuchsgut Merklingsen

#### Pflanzenschutzmitteleintrag in Oberflächengewässer

### Wirkstoffaustrag im Mittel von drei Jahren in Mais nach unterschiedlicher Bodenbearbeitung

| Wirkstoff/<br>Menge       | Austrag mit Oberflächenabfluss |           |             |            |             |
|---------------------------|--------------------------------|-----------|-------------|------------|-------------|
|                           | Pflug                          | Mulchsaat |             | Direktsaat |             |
|                           | Austrag                        | Austrag   | Reduktion % | Austrag    | Reduktion % |
| Terbutylazin<br>750 g/ha  | 0,96 g/ha                      | 0,10 g/ha | 90          | -          | 100         |
| Metolachlor<br>1450 g/ha  | 0,80 g/ha                      | 0,16 g/ha | 80          | -          | 100         |
| Pendimethalin<br>990 g/ha | 0,38 g/ha                      | 0,11 g/ha | 71          | -          | 100         |

Quelle: Erlach und Lütke Entrup, 2002



# Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb" Einfluss des Nacherntemanagements auf die Bestandesetablierung von Grünroggen

Hochschnitt → Aussaat

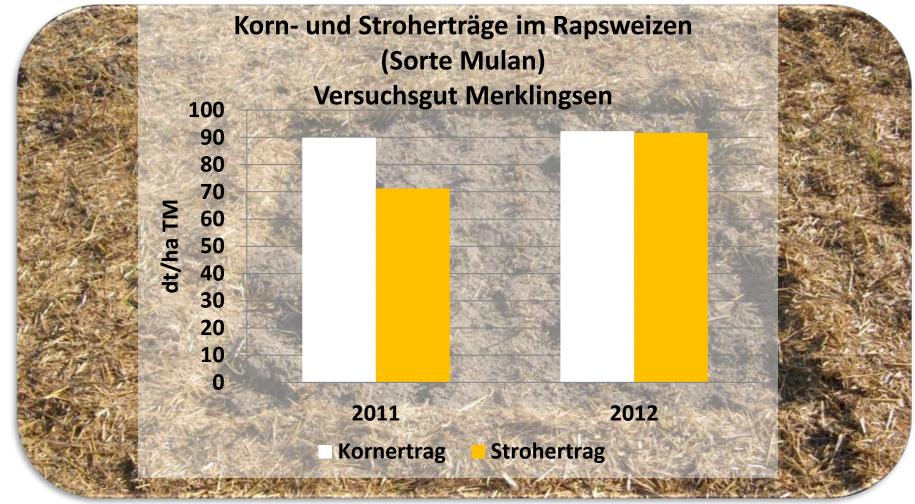
Hochschnitt → 1x Mulchen → Aussaat



Trockenmasseertrag Grünroggen: **81** dt ha<sup>-1</sup>

Trockenmasseertrag Grünroggen: **89** dt ha<sup>-1</sup>

QUELLE: ERGEBNISSE DES FORSCHUNGSPROJEKTES "OPTIMIERTER KLIMABETRIEB", SCHATTSCHNEIDER


Bernhard C. Schäfer Folie 38 (17.01.2019)

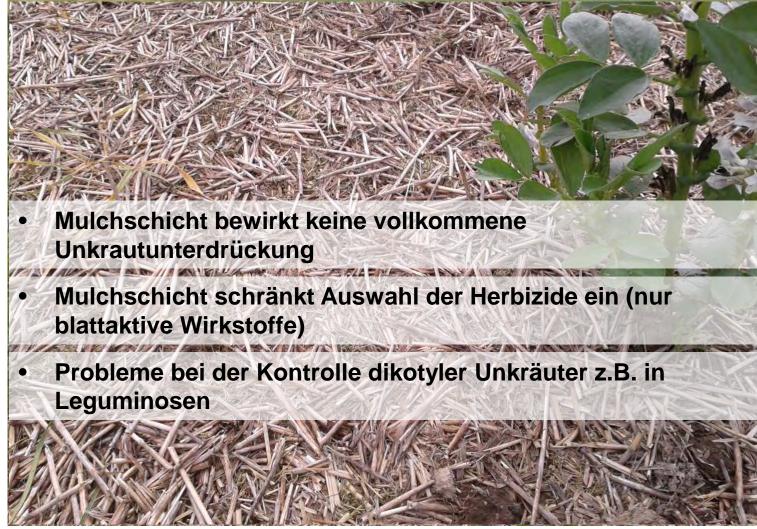






# Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb" Korn- und Stroherträge bei Weizen in Abhängigkeit vom Jahr




QUELLE: ERGEBNISSE DES FORSCHUNGSPROJEKTES "OPTIMIERTER KLIMABETRIEB", SCHATTSCHNEIDER

Bernhard C. Schäfer Folie 39 (17.01.2019)





# Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb" Mulchschicht zur Unkrautunterdrückung



#### Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb" Zwischenfruchtbestand am 04.10.2016



# Erfahrungen Direktsaat - Versuchsgut Merklingsen "Optimierter Klimabetrieb" Zwischenfruchtbestand am 04.10.2016



BILDQUELLE: HÜNNIES



## Entwicklung der Bodennutzung in Deutschland bei ausgewählten Winterkulturen (in 1.000 Hektar)

| Fläche    | 1991  | 2000  | 2010  | 2017  | 2018  |
|-----------|-------|-------|-------|-------|-------|
| W-Weizen  | 2.373 | 2.916 | 3.234 | 3.137 | 2.893 |
| W-Roggen  | 720   | 853   | 627   | 538   | 523   |
| W-Gerste  | 1.519 | 1.446 | 1.295 | 1.231 | 1.219 |
| Triticale | 130   | 499   | 398   | 391   | 360   |
| Summe     | 4.742 | 5.714 | 5.554 | 5.297 | 4.995 |
| % von AF  | 40,2  | 48,5  | 47,1  | 44,9  | 42,6  |
| W-Raps    | 950   | 1.078 | 1.461 | 1.308 | 1.222 |



Fruchtfolge – aktuelle Situation und Konsequenzen

# Entwicklung der Bodennutzung in Deutschland bei ausgewählten Sommerkulturen (in 1.000 Hektar)

| Fläche      | 1991  | 2000  | 2010  | 2018      |
|-------------|-------|-------|-------|-----------|
| Silomais    | 1.309 | 1.154 | 1.829 | 2.166     |
| Körnermais  | 238   | 371   | 467   | 442       |
| S-Gerste    | 1.016 | 621   | 347   | 448       |
| Hafer       | 380   | 237   | 141   | 140       |
| S-Weizen    | 80    | 47    | 43    | 112       |
| Zuckerrüben | 554   | 452   | 345   | 413       |
| Kartoffeln  | 342   | 304   | 254   | 250       |
| Lupinen     |       |       |       | 23        |
| Sojabohnen  | -     | -     | -     | 24        |
| Erbsen      | 33    | 164   | 57    | 71        |
| Ackerbohnen | 33    | 29    | 16    | <i>55</i> |

Bernhard Folie 44 (

#### Konsequenzen der geringen Kulturartenvielfalt

- Geringe Kulturartenvielfalt mit engen getreidelastigen Fruchtfolgen
- Auf etwa 2/3 des Ackerlandes wächst Weizen, Mais, Gerste oder Raps
- Auf gut 40 % des Ackerlandes steht Wintergetreide
- Auf mehr als der Hälfte des Ackerlandes werden Winterungen angebaut
- Mit Ausnahme von Mais haben alle Sommerkulturen in den letzten 25 Jahren an Fläche verloren oder sind bedeutungslos geblieben
- Konsequenzen:
  - Hohe kostenintensive Pflanzenschutzintensität
  - Hohes Risiko von PSM-Resistenzen
  - Hohe Empfindlichkeit gegenüber Wetterextremen und Schadereignissen
  - Bodenbearbeitung, Maßnahmen zur Bestandesführung und Ernte fallen in enge Zeiträume
  - Hohe, kostenintensive und schlagkräftige Mechanisierung erforderlich

University of Applied Sciences

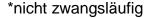
- Geringe Biodiversität
- Dauerhaft pfluglose Bodenbearbeitungssysteme kaum zu etablieren

#### "Fruchtfolge" - Krankheiten an Weizen

| Erreger<br>(gruppe)                              | befallen werden<br>neben Weizen | wichtige Quellen für<br>Überdauerung/Über-<br>tragung | Potentielle<br>Ertrags-<br>verluste |
|--------------------------------------------------|---------------------------------|-------------------------------------------------------|-------------------------------------|
| Microdochium<br>Fusarium ssp.<br>Gibberella ssp. | WG, WRo, Tr, (M)                | Stroh, Saatgut                                        | bis 50 %                            |
| Typhula ssp.                                     | WG, WRo                         | Boden                                                 | 12-15 %<br>(-80%)                   |
| Echter Mehltau                                   | WG, WRo, Tr, H                  | Stroh, Ausfallgetrei.                                 | 30 % (-50%)                         |
| Septoria ssp.                                    | Tr, (G, WRo, (H))               | Stroh                                                 | 13-26 %<br>(-60%)                   |
| Halmbruch                                        | G, WRo, (H)                     | Stroh                                                 | 5-10 %<br>(-30%)                    |
| Rhizoctonia cerealis                             | alle Getreidearten              | Stroh/Boden                                           | < 1%                                |
| Schwarzbeinigkeit                                | G, (Tr), ((Ro, H))              | Stroh/Boden                                           | - 30 % bis                          |

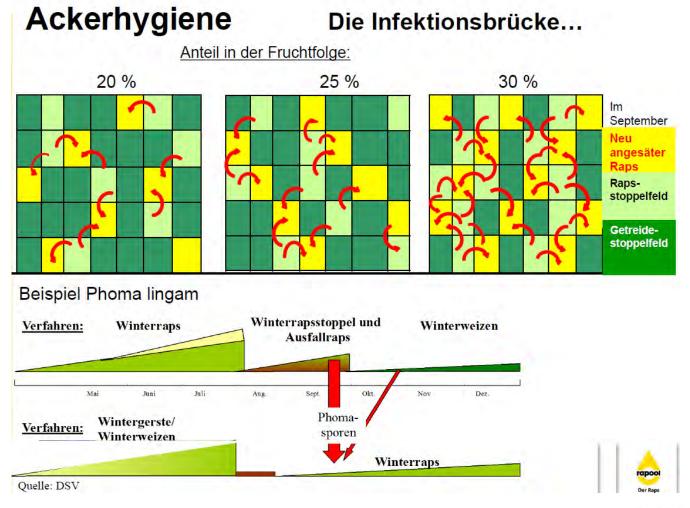
total

#### "Fruchtfolge" – Krankheiten und – Schädlinge an Weizen


| Erreger<br>(gruppe) | befallen werden<br>neben Weizen | wichtige Quellen für<br>Überdauerung/Über<br>-tragung | Potentielle<br>Ertrags-<br>verluste |
|---------------------|---------------------------------|-------------------------------------------------------|-------------------------------------|
| Drechs. sorokiniana | G, (Tr, Ro, H)                  | Saatgut, Stroh                                        | 13-23 %,                            |
| Cephalosporium      | (G, Tr, Ro, H)                  | Stroh, Boden                                          | bis 50 %                            |
| DTR                 | Tr, (G, Ro, H)                  | Stroh                                                 | bis 20-50%                          |
| Gelbrost            | Tr, G, (Ro, H)                  | Ausfallgetreide                                       | bis 70 %                            |
| Braunrost           | Tr, Ro                          | Ausfallgetreide                                       | bis 90 %                            |
| Schädling           | befallen werden<br>neben Weizen | Ursache für<br>Ausbreitung                            | Schad-<br>wirkung                   |
| Pratelynchus ssp.   | Getreide u.a.                   | hoher Getreideanteil in der Fruchtfolge               | 10-20 %                             |
| Getreidelaufkäfer   | G, Ro                           | Getreidedaueranbau                                    | Pflanzen-<br>ausfälle               |
| Weizengallmücke     | (G, Ro)                         | hoher Getreideanteil<br>in der Region                 | Backfähigkeit<br>Keimfähigkeit      |

Folie 47 (17.01.2019)

University of Applied Sciences


### Verfahrensvergleich zur Bestellung von Weizen nach unterschiedlicher Vorfrüchten (nach Blattfrucht konservierend, nach Halmfrucht Pflugfurche)

| Parameter                                         | Vorfrucht: Blattfrucht (Raps/Leguminosen)                                  | Vorfrucht: Halmfrucht<br>(Weizen)                                                   | Mehrkosten<br>€/ha |
|---------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------|
| Bodenbearbeitung<br>(variable<br>Maschinenkosten) | <ul><li>ggf. Walze/Striegel</li><li>Roundup</li><li>Grubber/Saat</li></ul> | <ul><li>Lockern/Mischen (8 – 10 cm)</li><li>Pflügen</li><li>Einebnen/Saat</li></ul> | 25 – 45            |
| Sortenwahl                                        | Keine<br>Einschränkung                                                     | Stoppelweizeneignung                                                                | 0-30               |
| Saattermin                                        | Flexibel                                                                   | Spätere Saat (+10 – 14 Tage)                                                        | 10*                |
| Verunkrautung                                     | Geringer bis mittlerer Besatz                                              | Normaler – hoher Besatz<br>(Schwerpunkt Gräser)                                     | 15-30*             |
| N- Düngung                                        | 160-180 kgN/ha                                                             | 200-220 kgN/ha                                                                      | 30-40              |
| Fungizideinsatz                                   | 2-(3) Behandlungen                                                         | 2-3 Behandlungen<br>Fusariumabsicherung?                                            | 20-30*             |
| Summe der Mehrkosten bei Stoppelweizen            |                                                                            |                                                                                     |                    |





#### Einfluss der Anbaudichte auf die Ausbreitung von Erregern



Quelle: Alpmann, 2017

Fachhochschule Südwestfalen

University of Applied Sciences

## Mehr Pflanzenbau – weniger Pflanzenschutz – auch bei Pflugverzicht? Fazit – konservierende Bodenbearbeitung

- Konservierende Anbausysteme bedürfen in besonderer Weise der Anpassung der Fruchtfolge um Pflanzenschutzrisiken zu minimieren und einen dauerhaften Pflugverzicht zu ermöglichen.
- Die Pflanzenschutzintensität wird bei konservierender Bodenbearbeitung wesentlich von den Fruchtarten bestimmt und ist nach Erfahrungen im Versuchsgut Merklingsen eher geringer als in Anbausystemen mit Pflug.
- Die höhere biologische Aktivität bei konservierender Bodenbearbeitung kann möglicherweise das Inokulum von Schaderregern senken, die von der Überdauerung auf Ernteresten profitieren (Halmbasiserkrankungen, Rhizoctonia, Fusariosen) und zu PSM-Einsparungen beitragen.
- Probleme mit Ungräsern lassen sich über die Gestaltung der Fruchtfolge vermeiden.



### Mehr Pflanzenbau – weniger Pflanzenschutz – auch bei Pflugverzicht? Fazit – Direktsaat

- Dem Management der Erntereste kommt neben der Fruchtfolgegestaltung bei Direktsaat eine besondere Bedeutung zu. Die Pflanzenschutzintensität muss dabei im Vergleich zu konventionellen Anbausystemen nicht erhöht sein.
- Eine sichere Beurteilung der Abundanz von Schnecken und Mäusen ist selbst in Großparzellenversuchen nicht möglich.
- Bei der Herbizidauswahl muss verstärkt auf blattaktive Wirkstoffe zurück gegriffen werden. Insbesondere bei "kleinen" Kulturen kann dies zu Problemen bei der chemischen Unkrautbekämpfung führen.
- Konzepte mit dem Ziel einer durchgängigen Bodenbedeckung unter Einbeziehung von Zwischenfrüchten müssen die Gefahr der Vektorenvermehrung für relevante Viruserkrankungen berücksichtigen.
- Insgesamt k\u00f6nnen die pflanzenbaulichen Instrumente der Fruchtfolgegestaltung und des Nacherntemanagements in Verbindung mit gesteigerten Bodenaktivit\u00e4t zu einer Reduktion des PSM-Einsatzes bei Pflugverzicht beitragen.

Fachhochschule

Südwestfalen

University of Applied Sciences

#### Vielen Dank für Ihre Aufmerksamkeit!



BILDQUELLE: SCHÄFER



Bernhard C. Schäfer Folie 52 (17.01.2019)